
Getting Started with the WrightAngle Waypoint System
1. Welcome to Waypoints!
1.1. What's This All About?

Hello and welcome! The WrightAngle Waypoint System is a handy tool for Unity game
developers looking to add helpful markers and guides into their projects. Think of it as
a way to point players towards goals, highlight cool stuff in the game world, or keep
track of moving things. It's designed to show clear indicators whether the target is
right in front of the player or hiding off-screen.

The system was built with a few key ideas in mind: keeping things running smoothly,
being flexible enough for different kinds of games, and being pretty easy to set up. It
can handle targets popping in and out of existence during gameplay, too. One of it's
primary goals is performance; it uses clever tricks like reusing marker images instead
of constantly creating new ones, and it doesn't check target positions every single
frame, which saves processing power. This focus on efficiency suggests an awareness
of common performance issues in game development, aiming to provide a solution
that works well even when things get busy on screen.

1.2. Cool Features Overview

● Smart Marker Reuse (Object Pooling): Instead of making and deleting marker
images all the time (which can slow things down), the system keeps a stash of
ready-to-use markers. When one's needed, it grabs one, when it's done, it puts it
back. This makes things much smoother, especially if lots of markers appear and
disappear quickly.

● Central Settings File (ScriptableObject): All the main settings (like how markers
look or how fast they update) are stored in a separate file (WaypointSettings).
This means developers can create different sets of settings (like one style for the
main screen, another for a minimap) and easily reuse them across different game
scenes or even projects. Changing this file updates all markers using it instantly.

● Handles Moving Targets: Objects become trackable by adding a
WaypointTarget script. These targets can tell the main system when they appear
or disappear using simple signals (C# events). This keeps everything organized
without needing complex connections between the manager and every single
target.

● On-Screen and Off-Screen Views: When a target is visible, its marker sits right
over it. When it goes off-screen, the marker can optionally stick to the edge of the
screen and point towards the target's direction.

● Speed Controls: Besides reusing markers, the system lets developers choose
how often it recalculates marker positions (UpdateFrequency). This helps balance
smooth visuals with game performance.

● Works in 2D & 3D: Whether the game is a 3D adventure or a 2D side-scroller, the
system can handle it. A simple setting tells it which type of camera view is being
used.

1.3. Who's It For?

This system is great for Unity developers at almost any level who need to show players
where to go or what to look at. It fits right into many game types:

● Shooters (FPS/TPS) for objectives or enemy locations.
● RPGs for quests, points of interest, or teammates.
● Simulation or Strategy games for units or locations.
● Big Open-World games for navigation.
● Basically, any project needing visual pointers in 2D or 3D space.

While getting started is straightforward (see the guide below!), there's plenty of room
for customization through the settings file and scripting for those who need more
control.

1.4. What's in the Box?

The main parts are a few code files:

● WaypointUIManager: The main controller.
● WaypointSettings: The settings file type.
● WaypointMarkerUI: The script for the marker image prefab.
● WaypointTarget: The script for things to track.

2. Your First Waypoints: Quick Setup Guide
2.1. Goal

This quick guide shows the minimum steps to get basic waypoint markers showing up
in a Unity scene.

2.2. Step 1: Create the Settings File

First up, let's make the settings file. This holds all the rules for the waypoints.

● In the Unity Editor's Project window, find a good folder (like Assets).
● Right-click, go to Create -> WrightAngle -> Waypoint Settings.
● Give the new file a name, maybe MyGameWaypointSettings.

● Select it to see its options in the Inspector window. The defaults are okay for now.

2.3. Step 2: Get Your Scene Ready

The system needs a Camera to see the world and a UI Canvas to draw the markers on.

● Make sure the scene has the main Camera that the player uses.
● Make sure there's a UI Canvas (GameObject -> UI -> Canvas). If not, create one.

The markers are UI elements and need a Canvas to live on.

2.4. Step 3: Add the Manager

Time to add the brains of the operation.

● Create a new empty GameObject in the Hierarchy (GameObject -> Create Empty).
Call it something like WaypointSystem.

● Select this WaypointSystem object.
● In the Inspector, click Add Component and find Waypoint UI Manager (or look

under WrightAngle).
● Now, fill in the slots in the Inspector:

○ Settings: Drag the MyGameWaypointSettings file created in Step 1 onto this
slot.

○ Waypoint Camera: Drag the main gameplay Camera from the Hierarchy onto
this slot.

○ Marker Parent Canvas: Drag a UI element's RectTransform from inside the
Canvas hierarchy onto this slot. This could be the Canvas itself, but it's better
to create an empty child Panel (like "WaypointMarkerContainer") inside the
Canvas and drag that Panel's RectTransform here. This tells the manager
where to put the marker images. Make sure whatever is dragged here is
actually inside a Canvas. Don't forget to drag the settings file onto it's slot!

2.5. Step 4: Make the Marker Prefab

The system needs a template for what the markers look like.

● Temporarily, create a basic UI Image on the Canvas (Right-click Canvas -> UI ->
Image). Name it WaypointMarker_Prefab.

● Customize this Image:
○ Give it an icon using the Source Image field (make sure the image file is set to

Sprite (2D and UI) in its import settings).
○ Adjust color, size (using the RectTransform), etc. It's often best if the icon

points "up".
○ Important: Select this WaypointMarker_Prefab object and add the

WaypointMarkerUI component (Add Component -> WrightAngle -> Waypoint
Marker UI).

○ On the WaypointMarkerUI component, find the Marker Icon slot and drag the
Image component (from this same object) onto it.

● Turn this configured WaypointMarker_Prefab into a reusable template (a prefab)
by dragging it from the Hierarchy into the Project window (e.g., into an
Assets/Prefabs folder).

● Delete the WaypointMarker_Prefab from the Hierarchy scene view.
● Finally, select the MyGameWaypointSettings asset (from Step 1) in the Project

window. Drag the new marker prefab from the Project window onto the Marker
Prefab slot in the Inspector.

2.6. Step 5: Choose Your Targets

Now, tell the system what to point at.

● Select any GameObject in the scene that should be a target (like an enemy,
treasure, or exit).

● For each one, add the WaypointTarget component (Add Component ->
WrightAngle -> Waypoint Target).

● Leave Activate On Start checked for now. This makes the target automatically
trackable when the game starts.

2.7. Step 6: Run It!

Hit the Play button in Unity.

● Markers should appear on the screen, pointing towards the target objects.
● Move the camera around. Watch how markers stay over targets when visible, and

clamp to the screen edges when the target goes out of view (if Use Off Screen
Indicators is on, which it is by default).

2.8. What's Next?

That's the basic setup! The system is running. To fine-tune how it looks and behaves,
explore the WaypointSettings file and the other options described below.

3. Tweaking the System: The Settings File
3.1. Why a Settings File?

The WaypointSettings asset file acts as the central control panel for the whole system.
Using a ScriptableObject like this has some nice benefits:

● Reuse: Use the same settings file in multiple scenes for consistency.

● Presets: Create different settings files for different looks or behaviors (e.g., main
HUD markers vs. minimap icons).

● Easy Updates: Change settings in one place, and it updates everywhere that file
is used. This separation of configuration from scene objects encourages a more
organized workflow, especially helpful if multiple people are working on the
project or if experimenting with different styles is needed.

3.2. Creating and Assigning

As covered in the Quick Start: create the asset via the Assets -> Create ->
WrightAngle -> Waypoint Settings menu, and then drag it onto the Settings field of the
WaypointUIManager component in the scene.

3.3. Core Functionality Parameters

These settings control the basic operation:

● UpdateFrequency: How often (in seconds) the system checks and updates marker
positions. A lower number (like 0.02) means smoother tracking for fast action but
uses more computer power. A higher number (like 0.5) saves power but might
look a bit jumpy. The default (0.1) is often a good starting point, but developers
should experiment to find the best balance for their game.

● GameMode: Tells the system if the main camera is Mode3D (perspective, for 3D
games) or Mode2D (orthographic, for 2D games). Setting this correctly ensures
calculations work right.

● MarkerPrefab: This is where the marker prefab (created in the tutorial) is linked.
It's essential, without it, no markers can be created.

● MaxVisibleDistance: Sets the maximum distance (in game units) a target can be
from the camera before its marker disappears completely. This helps
performance by ignoring far-off targets and keeps the screen less cluttered. Set
the distance were markers disappear.

● IgnoreZAxisForDistance2D: Only used in Mode2D. If checked (default is true), the
MaxVisibleDistance check ignores depth (Z-axis) and only considers the 2D plane
distance (X/Y). Useful for top-down or side-scrolling games where Z might just be
for visual layering.

3.4. Off-Screen Indicator Parameters

These control how markers look when the target is outside the camera's view:

● UseOffScreenIndicators: The main switch (default is true). If checked, markers for
off-screen targets stick to the screen edges and point towards them. If
unchecked, markers just disappear when the target leaves the view.

● ScreenEdgeMargin: Adds some padding (in pixels) between the absolute edge of
the screen and the off-screen markers. This stops them from feeling squished
right at the border (default is 50 pixels).

● FlipOffScreenMarkerY: A simple fix (default is false). If an off-screen marker icon
points down instead of up towards the target, check this box to flip it 180 degrees
automatically.

3.5. Settings Summary Table

Here's a quick reference for the WaypointSettings parameters:

Parameter Name What It Does (Simple
Explanation)

Typical Value/Options

Core Functionality

UpdateFrequency How often markers update
(seconds). Lower=smoother,
higher=faster perf.

0.01 - 1.0

GameMode Match camera type (3D
Perspective or 2D
Orthographic).

Mode3D / Mode2D

MarkerPrefab The marker image prefab
template.

GameObject (Prefab)

MaxVisibleDistance How far away markers can be
seen.

Positive number (e.g., 1000)

IgnoreZAxisForDistance2D In 2D mode, ignore depth for
distance checks?

true / false

Off-Screen Indicator

UseOffScreenIndicators Show markers clamped to
screen edge for off-screen
targets?

true / false

ScreenEdgeMargin Pixel padding from screen
edges for off-screen markers.

0 - 100 (e.g., 50)

FlipOffScreenMarkerY Flip off-screen marker
vertically if it points down?

true / false

4. Under the Hood: How the Main Parts Work (A Little)
4.1. WaypointUIManager: The Boss

Think of the WaypointUIManager component as the central coordinator. It's placed on
an object in the scene and needs references to the Settings file, the main Camera,
and the UI Canvas area where markers will live. It even checks its own setup when the

game starts (ValidateSetup) and warns in the console if something essential is
missing, like a reference or the marker prefab in the settings file, preventing runtime
problems.

How it works, simply put: it wakes up periodically (based on UpdateFrequency in the
settings). It looks at all the active WaypointTarget objects nearby. For each one, it
figures out if it's on-screen or off-screen. If a marker is needed, it grabs one from its
pool of reusable marker images (this avoids creating new ones constantly). Then, it
tells that specific marker (WaypointMarkerUI) how to display itself (position, rotation).
When a target is too far away or no longer needs a marker, the manager puts the
marker back into the pool for later use. It also listens for signals (static events
OnTargetEnabled, OnTargetDisabled) from WaypointTarget components, so it knows
when targets become active or inactive without needing direct links to every single
one. This event-based communication makes the system flexible and scalable, as the
manager doesn't need to know about every possible target beforehand. However, if
markers aren't behaving as expected, tracking down whether the signal was sent and
received correctly might require checking both the target and the manager. When the
manager object is destroyed, it cleans up by releasing all pooled markers and
stopping listening for target signals (OnDestroy).

4.2. WaypointMarkerUI: The Marker Itself

This script lives on the marker prefab. Its main job is to control the visual appearance
of one single marker instance, specifically the Marker Icon (the Image component
assigned in the prefab's Inspector). It takes instructions from the WaypointUIManager
via its UpdateDisplay method.

How it works: When UpdateDisplay is called, the script checks if the target is
on-screen or off-screen.

● On-Screen: It simply places the marker icon directly over the target's calculated
position on the screen and resets its rotation.

● Off-Screen: If off-screen indicators are enabled in the settings, it calculates the
correct position clamped to the edge of the screen (using the
ScreenEdgeMargin) and rotates the icon to point towards the hidden target's
direction. The FlipOffScreenMarkerY setting is used here to correct the rotation if
needed. Pointing the wrong way, the flip setting helps the marker. As a small
optimization, it also automatically disables raycasting on the marker icon,
assuming markers usually don't need to be clicked.

●

4.3. WaypointTarget: The Script

This is the simplest component. It's just a script added to any GameObject to tell the
WaypointUIManager, "Hey, track this thing!".

It has a couple of settings:

● ActivateOnStart: If checked, the target automatically tries to register itself with
the manager when the game starts. If unchecked, it needs to be activated later
using code.

● DisplayName: An optional name for easier identification, not used by default
visuals.

How it works: When this component gets enabled or disabled (or if its GameObject is
activated/deactivated), it sends out a signal (a static event: OnTargetEnabled or
OnTargetDisabled). The WaypointUIManager listens for these signals to know when to
start or stop tracking the target and show/hide its marker. This signaling system is key
to how targets can dynamically appear and disappear during gameplay. When it will
be be disabled, it sends a signal. Developers can also trigger these signals manually
from other scripts using the ActivateWaypoint() and DeactivateWaypoint() functions
on the WaypointTarget component. This is useful for controlling markers based on
game events like quests starting or items being picked up. In the editor, selecting an
object with this component shows a helpful colored sphere (gizmo) indicating if it's
currently being tracked (green) or not (yellow).

5. Going Further: Tips, Tricks & Fixes
5.1. Performance Tips

While designed to be efficient, here are ways to keep things running smoothly:

● Adjust Update Speed: The UpdateFrequency in WaypointSettings is the main
performance knob. Higher values (e.g., 0.2 seconds instead of 0.1) mean less
frequent updates, saving CPU power, especially with many targets. Experiment to
find a good balance.

● Use Max Distance: Keep MaxVisibleDistance reasonable. Don't track targets
hundreds of miles away if they aren't relevant. This culls distant targets, reducing
the manager's workload.

● Simple Markers: Keep the MarkerPrefab visuals reasonably simple. Complex
hierarchies or effects on the prefab can impact UI performance.

● Deactivate Unused Targets: If a target is no longer needed (e.g., quest
completed, enemy defeated), make sure its WaypointTarget component is

deactivated either by disabling the component/GameObject or by calling
DeactivateWaypoint() via script. This removes it from the manager's active list.

5.2. Controlling Markers with Code

Often, waypoints shouldn't be active all the time. They might only appear when a
quest starts or disappear when an item is collected. This is done by unchecking
ActivateOnStart on the WaypointTarget component and then calling its functions from
other scripts.

Here's a basic example for activating a quest target:

using UnityEngine;
using WrightAngle.Waypoint; // Need this line!

public class QuestController : MonoBehaviour
{
 public GameObject questObjectiveObject; // Assign in Inspector

 public void BeginQuest()
 {
 if (questObjectiveObject!= null)
 {
 WaypointTarget target =
questObjectiveObject.GetComponent<WaypointTarget>();
 if (target!= null &&!target.IsRegistered) // Check if it has the component and isn't already
active
 {
 target.ActivateWaypoint(); // Tell the system to start tracking it
 }
 }
 }

 public void EndQuest()
 {
 if (questObjectiveObject!= null)
 {
 WaypointTarget target =
questObjectiveObject.GetComponent<WaypointTarget>();

 if (target!= null && target.IsRegistered) // Check if it's currently active
 {
 target.DeactivateWaypoint(); // Tell the system to stop tracking it
 }
 }
 }
}

Remember to add using WrightAngle.Waypoint; at the top of any script that needs to
talk to the waypoint components. Call ActivateWaypoint() to show the marker and
DeactivateWaypoint() to hide it.

5.3. Customizing Marker Looks

The visual style comes entirely from the MarkerPrefab created and assigned in the
WaypointSettings.

● Design: Build the prefab using standard Unity UI elements (Images, Text, etc.).
● Icon: Make sure the Marker Icon field on the WaypointMarkerUI script (on the

prefab root) points to the main Image element that should be positioned and
rotated.

● Rotation: The system assumes the marker icon points "up" (along its local Y-axis)
by default for off-screen rotation. If it points down, use the FlipOffScreenMarkerY
setting. If it points sideways, the prefab's rotation might need adjusting, or the
calculation code in WaypointMarkerUI could be modified.

5.4. Troubleshooting Common Issues

Having trouble? Here are some common fixes:

● Problem: Markers aren't showing up at all.
○ Things to Check:

■ Is there exactly one active WaypointUIManager in the scene, and is it
enabled?

■ Check the Console window for error messages when starting the game.
The manager logs errors if setup is wrong.

■ Are Settings, Waypoint Camera, and Marker Parent Canvas all assigned
correctly on the WaypointUIManager?

■ Is the Marker Parent Canvas object active and definitely inside an active UI
Canvas?

■ Is a WaypointSettings asset assigned to the manager?
■ Inside the WaypointSettings asset, is the Marker Prefab slot assigned?

■ Does the MarkerPrefab itself exist, have WaypointMarkerUI script on its
root, and is the Marker Icon field assigned on that script?

■ Are WaypointTarget components on the objects to track? Are those
objects active?

■ Is ActivateOnStart checked on the WaypointTarget, OR has
ActivateWaypoint() been called via script?

■ Are the targets within the MaxVisibleDistance from the camera?
■ The frequent need to double-check these Inspector assignments

suggests that ensuring all the pieces are correctly linked during setup is
crucial, as missing references are a likely cause if things aren't working.
Don't forget to check none of the references are missing.

● Problem: On-screen markers show, but off-screen ones don't.
○ Things to Check:

■ In WaypointSettings, is UseOffScreenIndicators checked?
■ Are the targets still within MaxVisibleDistance even when off-screen?

● Problem: Off-screen markers point the wrong way.
○ Things to Check:

■ Does the marker icon graphic point "up"? If not, try checking
FlipOffScreenMarkerY in WaypointSettings or adjust the prefab rotation.

■ Is GameMode (2D/3D) in WaypointSettings set correctly for the camera
being used?

● Problem: Game performance drops with many waypoints.
○ Things to Check:

■ Increase UpdateFrequency in WaypointSettings (try 0.2 or higher).
■ Lower MaxVisibleDistance in WaypointSettings.
■ Simplify the graphics/complexity of the MarkerPrefab.
■ Make sure targets are being deactivated (DeactivateWaypoint() or

disabling object/component) when no longer needed.
● Problem: Console shows errors about missing references on startup.

○ Things to Check:
■ Carefully re-check all assigned slots on the WaypointUIManager (Settings,

Camera, Canvas Parent) and within the assigned WaypointSettings asset
(Marker Prefab). The error message usually specifies which one is missing.

6. Quick Ref: What Those Words Mean
In case it helps, here's what some of the key terms mean:

● WaypointUIManager: The main script that controls everything.
● WaypointSettings: The project file holding all the settings.
● WaypointMarkerUI: The script on the marker prefab that handles its look.
● WaypointTarget: The script added to objects to make them trackable.
● Object Pooling: Reusing marker images to help the game run faster.
● Marker Prefab: The template image/UI element used for the markers.
● On-Screen Marker: How the marker looks when the target is visible.
● Off-Screen Indicator: How the marker looks (stuck to screen edge) when the

target is hidden.
● UpdateFrequency: How often the system updates marker positions.
● MaxVisibleDistance: How far away a target can be before its marker vanishes.
● ScriptableObject: A type of Unity asset file that stores data (like

WaypointSettings).

I wish you the best, and good luck with your project :)

	Getting Started with the WrightAngle Waypoint System
	1. Welcome to Waypoints!
	1.1. What's This All About?
	1.2. Cool Features Overview
	1.3. Who's It For?
	1.4. What's in the Box?

	2. Your First Waypoints: Quick Setup Guide
	2.1. Goal
	2.2. Step 1: Create the Settings File
	2.3. Step 2: Get Your Scene Ready
	2.4. Step 3: Add the Manager
	2.5. Step 4: Make the Marker Prefab
	2.6. Step 5: Choose Your Targets
	2.7. Step 6: Run It!
	2.8. What's Next?

	3. Tweaking the System: The Settings File
	3.1. Why a Settings File?
	3.2. Creating and Assigning
	3.3. Core Functionality Parameters
	3.4. Off-Screen Indicator Parameters
	3.5. Settings Summary Table

	4. Under the Hood: How the Main Parts Work (A Little)
	4.1. WaypointUIManager: The Boss
	4.2. WaypointMarkerUI: The Marker Itself
	4.3. WaypointTarget: The Script

	5. Going Further: Tips, Tricks & Fixes
	5.1. Performance Tips
	5.2. Controlling Markers with Code
	5.3. Customizing Marker Looks
	5.4. Troubleshooting Common Issues

	6. Quick Ref: What Those Words Mean

